训练日记

介绍

  • 数据集:
  • (1)外卖:
数据集版本 数据集信息
waimaiV0.1 低点位数据:标签(’ele’: 1, ‘meituan’: 0, ‘other’: 2, ‘person’: 3) 训练集(212440条):http://pqemz4kka.bkt.clouddn.com/xuhuiwaimai/waimaitrainv0.3.json;测试集(6676条):http://pqemz4kka.bkt.clouddn.com/xuhuiwaimai/waimaivalv0.1.json
waimaiV0.2 低点位数据:标签(’ele’: 1, ‘meituan’: 0, ‘other’: 2, ‘person’: 3) 训练集(213479条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/waimaitrainv0.4_213479.json;测试集(6676条):http://pqemz4kka.bkt.clouddn.com/xuhuiwaimai/waimaivalv0.1.json
waimaiV0.2.2 加入每日徐汇现场返还数据,{waimaitrainv0.4_origin_89267+waimai0604-true-1560130072002+waimei0603_1-true-1560130054572}
更新训练集(218533条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/waimai0610_train_218533.json (lmdb_waimaitrain0610)
测试集不变。
waimaiV0.2.3 标签(’meituan’: 0,’ele’: 1, ‘other’: 2, ‘person’: 3)
重新整理打标了waimaiV0.2.2中的训练集。
训练集(229896):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/waimai0625_train229896.json (lmdb_waimaitrain0625)
测试集(6676):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/waimaivalv0.3_update-0.2.json (lmdb_waimaival0.2)
suswaimaiv01 标签 {‘ele’: 1, ‘meituan’: 0, ‘other’: 2, ‘person’: 3, ‘suspect-ele’:4, ‘suspect-meituan’:5}
训练集(14256):waimai0703_train.json(lmdb_waimaisustr0.1)
测试集(306):waimaitr0703_val.json(lmdb_waimaisusval0.1)
  • (2)大小车:
vehicleV0.1_test 低点位数据:标签(’bus’: 0, ‘car’: 1, ‘muck-truck’: 2, ‘pick-up’: 3, ‘truck’:4, ‘light-bus’:5)
训练集(229394条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/vehicle_train0.1_229394.json;
验证集(1200条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/vehicle_val0.1_1200.json
vehicleV0.1
vehicleV0.1_update
大小车:标签 {‘car’: 0, ‘pick-up’: 1, ‘light-bus’: 2, ‘bus’: 3, ‘truck’:4, ‘muck-truck’:5}
训练集(231541条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/vehicle_train0.2_231541.json
验证集(1200条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/vehicle_val0.2_1200.json
测试集重新整理更新(1200条):qiniu:///supredata-internal-video/surveillance/xuhui/crops/201906/traindata/0610vehicle_val_update0606_1200.json. (lmdb_vechicle_val0.22)
  • 训练
  • (1)外卖分类:
训练日期 训练数据集 基础模型 默认参数 调整参数 训练结果
07-01 waimaiV0.2.3 resnet18_112 epochs: 50
train_batch: 256
test_batch: 200
base_lr: 0.01
lr_scheduler: ‘step’
lr_schedule: [20, 30, 40]
gamma: 0.1
momentum: 0.9
weight_decay: 0.002
fix_bn: False
num_classes: 4
base_size: [128,128]
crop_size: 112
dropout: 0.5
alpha:0.8
lr_scheduler: ‘cosine’
best_acc:93.92
{‘meituan’: 92.30, ‘ele’: 93.88, ‘other’: 94.77, ‘person’: 91.36} 
07-01 waimaiV0.2.3 resnet18_112 / alpha:0.8
lr_scheduler: ‘cosine’
best_acc:93.94
{‘meituan’: 92.30, ‘ele’: 93.35, ‘other’: 92.71, ‘person’: 93.62} 
07-02 waimaiV0.2.3 resnet18_112 / alpha:0.8
loss_type: ‘label_smoothing’
best_acc:93.66
{‘meituan’: 94.37, ‘ele’: 93.61, ‘other’: 92.57, ‘person’: 93.77} 
07-02 waimaiV0.2.3 resnet18_112 / alpha:0.8
lr_scheduler: ‘cosine’
loss_type: ‘label_smoothing’
best_acc:93.49
{‘meituan’: 94.08, ‘ele’: 94.41, ‘other’: 94.49, ‘person’: 91.336} 
07-03 waimaiV0.2.3 resnet18_112 / alpha:0.8
base_lr:0.001
loss_type: ‘label_smoothing’
best_acc:93.69
{‘meituan’: 90.82, ‘ele’: 92.02, ‘other’: 92.81, ‘person’: 94.02} 
07-15 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
loss_type: ‘label_smoothing’
aug_hue:0.5
arch: ‘mobilenet2’
pertained:mobilenet_v2_1.0_224
best_acc:91.67
{‘meituan’: 90.82, ‘ele’: 91.22, ‘other’: 88.42, ‘person’: 93.71} 
07-15 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
loss_type: ‘label_smoothing’
aug_hue:0.5
arch: ‘mobilenet2’
best_acc:92.17
{‘meituan’: 91.71, ‘ele’: 90.69, ‘other’: 91.45, ‘person’: 91.97} 
07-16 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
weight_decay:4e-5
aug_hue:0.1
arch: ‘mobilenet2’
pertained:mobilenet_v2_1.0_224
best_acc:92.52
{‘meituan’: 92.60, ‘ele’: 94.14, ‘other’: 90.28, ‘person’: 92.89} 
07-16 waimaiV0.2.3 mobilenet_v2 / base_lr:0.001
weight_decay:4e-5
aug_hue:0.1
arch: ‘mobilenet2’
pertained:mobilenet_v2_1.0_224
best_acc:92.70
{‘meituan’: 91.12, ‘ele’: 92.28, ‘other’: 92.11, ‘person’: 90.97} 
07-16 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
loss_type: ‘label_smoothing’
best_acc:93.69
{‘meituan’: 90.82, ‘ele’: 92.02, ‘other’: 92.81, ‘person’: 94.02} 
07-16 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
weight_decay:4e-5
aug_hue:0.1
arch: ‘mobilenet2’
pertained:mobilenet_v2_1.0_224
best_acc:93.77
{‘meituan’: 93.78, ‘ele’: 92.81, ‘other’: 93.97, ‘person’: 92.40} 
07-17 waimaiV0.2.3 mobilenet_v2 / alpha:0.8
base_lr:0.001
weight_decay:4e-5
aug_hue:0.1
arch: ‘mobilenet2’
pertained:mobilenet_v2_1.0_224
best_acc:93.48
{‘meituan’: 89.64, ‘ele’: 91.75, ‘other’: 93.18, ‘person’: 93.22} 
07-03 waimaiV0.2.3 resnet18_112 / alpha:0.8
base_lr:0.001
loss_type: ‘label_smoothing’
best_acc:93.69
{‘meituan’: 90.82, ‘ele’: 92.02, ‘other’: 92.81, ‘person’: 94.02} 
  • (2)大车小车:
训练日期 训练数据集 基础模型 默认参数 调整参数 训练结果
06-11 vehicleV0.1_update resnet18_112 / / best_acc:90.15%
{‘car’: 93.46, ‘pick-up’: 88.00, ‘light-bus’: 79.39, ‘bus’: 96.50, ‘truck’: 87.50, ‘muck-truck’: 100.00}
  • 训练日记: 7月1日 周一 晴
  • 1.外卖分类训练
  • 采用cosine学习率变化曲线,增加mixup扰动测试,设置参数:alpha=0.8。训练结果:best_acc:93.92 ,第42个epoch,{‘meituan’: 92.30, ‘ele’: 93.88, ‘other’: 94.77, ‘person’: 91.36}
  • 采用cosine,在Macc上提高了0.4个点,用本次训练的模型作为预训练模型进行fine-turning。
  • 参数设置:lr_scheduler: ‘step’,lr_schedule: [20,40],alpha=0.8,其他默认。训练结果:best_acc:93.94 ,第10个epoch,{‘meituan’: 92.30, ‘ele’: 93.35, ‘other’: 92.71, ‘person’: 93.62}

7月2日 周二

  • 1.外卖分类:
  • 采用Label Smoothing来优化,设置参数,loss_type: ‘label_smoothing’,alpha=0.8,其他参数默认。训练结果:best_acc:93.66 ,第21个epoch,{‘meituan’: 94.37, ‘ele’: 93.61, ‘other’: 92.57, ‘person’: 93.77}
  • 从结果分析,采用label_smoothing对美团的表现确实提高了一些,漏检减少了些,但同时误检增多了。
  • 继续采用cosine学习率变化曲线训练,设置参数:lr_scheduler: ‘cosine’,loss_type: ‘label_smoothing’,alpha=0.8,其他参数默认。训练结果:best_acc:93.63 ,第49个epoch,{‘meituan’: 94.08, ‘ele’: 94.41, ‘other’: 94.49, ‘person’: 91.336}
  • 结果分析,对美团和饿了么的召回率提高了,但是误检也多了。

7月3日 周三 阴

  • 1.外卖分类:
  • 用昨天训练的两个模型进行fine-turning,第一个模型:0702_waimai_m0.8_res18_112_21e_93.66.pth.tar,设置参数:base_lr:0.001,alpha:0.8,lr_scheduler: ‘cosine’,loss_type: ‘label_smoothing’,其他参数默认。训练结果:best_acc:93.69 ,第12个epoch,{‘meituan’: 90.82, ‘ele’: 92.02, ‘other’: 92.81, ‘person’: 94.02}
  • 看得出来,效果并不理想,对美团饿了么物件虽然减少了,但是漏检增加了,整体表现不如原来的好。

7月15日 周一 晴

  • 1.外卖分类训练:验证mobilenet2精度后,以mobilenet2训练,设置参数:arch: ‘mobilenet2’,pretrained :’mobilenet_v2_1.0_224’,aug_hue: 0.5,loss_type: ‘label_smoothing’,base_lr: 0.001,alpha: 0.8,其他默认。
  • 训练结果:best_acc=91.67,在第40个epoch,
  • {‘meituan’: 90.82, ‘ele’: 91.22, ‘other’: 88.42, ‘person’:93.71}
  • 不采用与训练模型。设置参数:arch: ‘mobilenet2’,aug_hue: 0.5,loss_type: ‘label_smoothing’,base_lr: 0.01,alpha: 0.8,其他默认。
  • 训练结果:best_acc=92.17,在第34个epoch,
  • {‘meituan’: 91.71, ‘ele’: 90.69, ‘other’: 91.45, ‘person’:91.97}
  • 2.去重后的疑似数据集测试训练。
  • 设置参数:aug_hue: 0.5,loss_type: ‘label_smoothing’,base_lr: 0.01,alpha: 0.8,训练结果:bese_acc:89.39,在第43个epoch。
  • {‘meituan’: 85.85, ‘ele’: 83.00, ‘other’: 92.70, ‘person’: 90.53, ‘suspect-ele’: 38.65, ‘suspect-meituan’: 34.04}
  • 在疑似训练集训练的模型中,在验证集的误检会比较小,但是漏检的数量也比较多。

7月16日 周二 多云

  • 1.外卖分类训练:仔细对比demo中的训练参数设定,设定本次训练参数:base_lr: 0.001,pretrained: ‘mobilenet_v2_1.0_224.pth.tar’,weight_decay: 4e-5,alpha: 0.8,其他参数默认。
  • 训练结果:best_acc=92.52,在第29个epoch,
  • {‘meituan’: 92.60, ‘ele’: 94.14, ‘other’: 90.28, ‘person’:92.89}
  • 设置参数:base_lr: 0.001,pretrained: ‘mobilenet_v2_1.0_224.pth.tar’,weight_decay: 4e-5
  • 训练结果:best_acc=92.70,在第17个epoch,
  • {‘meituan’: 91.12, ‘ele’: 92.28, ‘other’: 92.11, ‘person’:90.97}
  • 参数:base_lr: 0.01,pretrained: ‘mobilenet_v2_1.0_224.pth.tar’,weight_decay: 4e-5,alpha: 0.8
  • 训练结果:best_acc=93.77,在第21个epoch,
  • {‘meituan’: 93.78, ‘ele’: 92.81, ‘other’: 93.97, ‘person’:92.40}
  • 评估:这个模型在验证集中的效果一般,虽然多见识别出了几张饿了么,同时,误检的数量也增加了,多了几张新的误检。

打赏一个呗

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦